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Introduction: Goal and Contributions

Goal and contributions

We propose a novel method to compute the barycenter of a set of
probability distributions with respect to the Sinkhorn divergence that:

• does not fix the support beforehand

• handles both discrete and continuous measures

• admits convergence analysis.
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Introduction: Goal and Contributions

Goal and contributions

Our analyais hinges on the following contributions:

• We show that the gradient of the Sinkhorn divergence is Lipschitz
continuous on the space of probability measures with respect to the
Total Variation.

• We characterize the sample complexity of an emprical estimator
approximating the Sinkhorn gradients.

• A byproduct of our analysis is the generalization of the Frank-Wolfe
algorithm to settings where the objective functional is defined only on
a set with empty interior, which is the case for Sinkhorn divergence
barycenter problem.
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Setting and problem statement

Setting and Notation

X ⊂ Rd is a compact set

c : X × X → R is a symmetric cost function, e.g. c(·, ·) = ‖· − ·‖22

M+
1 (X ) is the space of probability measures on X .

M(X ) is the Banach space of finite signed measures on X .
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Setting and problem statement

Entropic Regularized Optimal Transport

For any α, β ∈M+
1 (X ), the Optimal Transport problem with entropic

regularization is defined as follow

OTε(α, β) = min
π∈Π(α,β)

∫
X 2

c(x, y) dπ(x, y)+εKL(π|α⊗β), ε ≥ 0 (1)

where:

KL(π|α⊗ β) is the Kullback-Leibler divergence between transport plan
π and the product distribution α⊗ β

Π(α, β) = {π ∈M1
+(X 2) : P1#π = α, P2#π = β} is the transport

polytope (with Pi : X ×X → X the projector onto the i-th component
and # the push-forward)
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Setting and problem statement

Sinkhorn Divergences

To remove the bias induced by the KL, [Genevay et al., 2018] proposed to
remove the autocorrelation terms −1

2OTε(α, α), −1
2OTε(β, β) from

OTε(α, β) in order to get a divergence

Sε(α, β) = OTε(α, β)− 1

2
OTε(α, α)− 1

2
OTε(β, β), (2)

which is nonnegative, convex and metrizes the weak convergence (see [Feydy

et al., 2019]).

In the following we study barycenter problem with this Sinkhorn divergence.
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Setting and problem statement

Barycenter Problem

Barycenters of probabilities are useful in a range of applications, as texture
mixing, Bayesian inference, imaging.

The barycenter problem w.r.t. Sinkhorn divergence is formulated as follows:

given β1, . . . βm ∈M+
1 (X ) input measures, and ω1, . . . , ωm ≥ 0 a set of

weights such that
∑m

j=1 ωj = 1, solve

min
α∈M+

1 (X )
Bε(α), with Bε(α) =

m∑
j=1

ωj Sε(α, βj). (3)
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Setting and problem statement

Approach: Frank-Wolfe algorithm

Classic methods to approach barycenter problem:

1. fix the support of the barycenter beforehand and optimize the weights
only (convergence analysis available)

OR

2. alternately optimize on weights and support points (no convergence
guarantees)

Our approach via Frank-Wolfe:

− It iteratively populates the target barycenter, one point at the time;

− It does not require the support to be fixed beforehand;

− There is no hyperparameter tuning.
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Approach

Frank-Wolfe Algorithm on Banach spaces

W Banach space, W∗ topological dual and D ⊂ W∗ nonempty, convex,
closed, bounded set.
G : D → R convex + some smoothness properties

Theorem

Suppose in addition that ∇G is L-Lipschitz continuous with L > 0. Let
(wk)k∈N be obtained according to Alg 1. Then, for every integer k ≥ 1,

G(wk)−min G ≤ 2

k + 2
L (diamD)2 + ∆k. (4)
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Approach

Can Frank-Wolfe be applied?

Optimization domain. M+
1 (X ) is convex, closed, and bounded in the

Banach space M(X ): 4

Objective functional. The objective functional Bε is convex since it is a
convex combination of Sε(·, βj), with j = 1 . . .m. 4

Lipschitz continuity of the gradient. This is the most critical condition.
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Approach

Lipschitz continuity of Sinkhorn potentials

This is one of the main contributions of the paper.

Theorem

The gradient ∇Sε is Lipschitz continuous, i.e. for all α, α′, β, β′ ∈M+
1 (X ),∥∥∇Sε(α, β)−∇Sε(α

′, β′)
∥∥
∞ . (

∥∥α− α′∥∥
TV

+
∥∥β − β′∥∥

TV
). (5)

It follows that ∇Bε is also Lipschitz continuous and hence our framework is
suitable to apply FW algorithm.
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Approach

How the algorithm works - I

The inner step in FW algorithm amounts to:

µk+1 ∈ argmin
µ∈M+

1 (X )

m∑
j=1

ωj 〈∇Sε[(·, βj)](αk), µ〉 . (6)

Note that:

• by Bauer maximum principle → solutions of (6) are achieved at the
extreme points of the optimization domain;

• extreme points of M+
1 (X ) are Dirac deltas.

Hence (6) is equivalent to

µk+1 = δxk+1
with xk+1 ∈ argmin

x∈X

m∑
j=1

ωj
(
∇Sε[(·, βj)](αk)(x)

)
.

(7)
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Approach

How the algorithm works - II

Once the new support point xk+1 has been obtained, FW update
corresponds to

αk+1 = αk +
2

k + 2
(δxk+1

− αk) =
k

k + 2
αk +

2

k + 2
δxk+1

. (8)

Weights and support points are updated simultaneously at each iteration.
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Convergence analysis

Convergence analysis-finite case

Theorem

Suppose that β1, . . . βm ∈M+
1 (X ) have finite support and let αk be the

k-th iterate of our algorithm. Then,

Bε(αk)− min
α∈M+

1 (X )
Bε(α) ≤ Cε

k + 2
, (9)

where Cε is a constant depending on ε and on the domain X .

What if the input measures β1, . . . βm ∈M+
1 (X ) are continuous and we

only have access to samples?
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Convergence analysis

Sample complexity of Sinkhorn Potentials

FW can be applied when only an approximation of the gradient is available.

Hence we need quantify the approximation error between ∇Sε(·, β) and
∇Sε(·, β̂) in terms of the sample size of β̂:

Theorem (Sample Complexity of Sinkhorn Potentials)

Suppose that c is smooth. Then, for any α, β ∈M+
1 (X ) and any empirical

measure β̂ of a set of n points independently sampled from β, we have, for
every τ ∈ (0, 1]

‖∇1Sε(α, β)−∇1Sε(α, β̂)‖∞ ≤
Cε log 3

τ√
n

(10)

with probability at least 1− τ .
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Convergence analysis

Convergence analysis-general case

Using the sample complexity of Sinkhorn gradient, we are able to
characterize the convergence analysis of our algorithm in the general setting.

Theorem

Suppose that c is smooth. Let n ∈ N and β̂1, . . . , β̂m be empirical
distributions with n support points, each independently sampled from
β1, . . . , βm. Let αk be the k-th iterate of our algorithm applied to
β̂1, . . . , β̂m. Then for any τ ∈ (0, 1], the following holds with probability
larger than 1− τ

Bε(αk)− min
α∈M+

1 (X )
Bε(α) ≤

Cε log 3m
τ

min(k,
√
n)
. (11)

Sinkhorn Barycenters via Frank Wolfe 17 / 22



Experiments

Barycenter of nested ellipses

Barycenter of 30 randomly generated nested ellipses on a 50× 50 grid
similarly to [Cuturi and Doucet, 2014]. Each image is interpreted as a
probability distribution in 2D.
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Experiments

Barycenters of continuous measures

Barycenter of 5 Gaussian distributions with mean and covariance randomly
generated.

scatter plot: output of our method

level sets of its density: true Wasserstein barycenter

FW recovers both the mean and covariance of the target barycenter.
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Experiments

Matching of a distribution

“Barycenter” of a single measure β ∈M1
+(X ).

Solution of this problem is β itself → we can interpret the intermediate
iterates as compressed version of the original measure.

FW prioritizes the support points with higher weight.
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Experiments

Summary

• We proposed a novel method to compute Sinkhorn barycenter with free
supports via Frank-Wolfe algorithm.

• We proved convergence rate both in case of finite and continuous
measures.

• We proved two new results on Sinkhorn divergences- Lipschitz
continuity and sample complexity of the gradient- instrumental for the
convergence analysis of the method.
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Experiments
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