Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance

CONTRIBUTIONS IN A NUTSHELL

Goal: In a supervised learning setting, learn functions $f : \mathcal{X} \to \mathcal{Y}$ where the **output** space \mathcal{Y} is a set of discrete **probability distributions**.

Tool: Optimal Transport

Approach: Use Sinkhorn approximations as loss functions

Contributions:

- Characterise the **differential properties** of Sinkhorn approximations.
- Provide learning bounds for learning with Sinkhorn loss(es), adopting a structured prediction perspective.

BACKGROUND

Optimal transport theory compares probability measures over a metric space. Wasserstein distance (discrete setting):

$$\mathsf{W}_p^p(\mu,\nu) = \min_{T \in \Pi(a,b)} \langle T, M \rangle$$

where $M \in \mathbb{R}^{n \times m}$ is the *cost matrix* with entries $M_{ij} = \mathsf{d}(x_i, y_j)^p$ and $\Pi(a, b)$ denotes the *transportation* polytope

$$\Pi(a,b) = \{T \in \mathbb{R}^{n \times m}_+ \mid T \mathbb{1}_m = a, \quad T^\top \mathbb{1}_n = b \}.$$

Regularization of Wasserstein distance

Definition Given μ and ν as above, entropic regularizations of the Wasserstein distance, referred to as Sinkhorn distances [1] are defined as

$$\tilde{\mathsf{S}}_{\lambda}(a,b) = \langle T_{\lambda}, M \rangle - \frac{1}{\lambda}h(T_{\lambda}) \text{ and } \mathsf{S}_{\lambda}(a,b) = \langle T_{\lambda}, M \rangle$$

where

$$h(T) := -\sum_{i,j=1}^{n,m} T_{ij}(\log T_{ij} - 1) \quad \text{and} \quad T_{\lambda} = \underset{T \in \Pi(a,b)}{\operatorname{argmin}} \langle T, M \rangle -$$

Proposition Let $\lambda > 0$. For any pair of discrete measures $\mu, \nu \in \mathcal{P}(X)$ with respective weights $a \in \Delta_n$ and $b \in \Delta_m$, we have

$$\left| S_{\lambda}(\mu,\nu) - W(\mu,\nu) \right| \le c_1 e^{-\lambda} \qquad \left| \tilde{S}_{\lambda}(\mu,\nu) - W(\mu,\nu) \right| \le c_2/2$$

with c_1, c_2 constants independent of λ , depending on the support of μ and ν .

Question: Is S_{λ} a more natural approximation of the Wasserstein distance W?

Figure: Comparison of the sharp (Blue) and regularized (Orange) barycenters of two Dirac's deltas (Black) centered in 0 and 20 for different values of λ .

Giulia Luise ¹ Alessandro Rudi ² Massimiliano Pontil ^{1,3} Carlo Ciliberto ^{1,4}

¹Department of Computer Science, University College of London, UK. ²INRIA - Sierra-Project team, École Normale Supérieure, PSL Research, Paris, France ³Computational Statistics and Machine Learning, Istituto Italiano di Tecnologia, Genova, Italy. ⁴Department of Electrical and Electronic Engineering, Imperial College London, UK.

lambda,

DIFFERENTIAL PROPERTIES

We characterise regularity properties of Sinkhorn maps.

Theorem For any $\lambda > 0$, Sinkhorn maps \tilde{S}_{λ} and $S_{\lambda} : \Delta_n \times \Delta_n \to \mathbb{R}$ are C^{∞} in the interior of their domain.

Proof (sketch). The proof is organized in the following steps: Step 1: S_{λ} and \tilde{S}_{λ} are smooth as functions of $T^{\lambda} \rightarrow sufficient$ to show that T^{λ} is smooth in a, b. Step 2: Set $(\alpha^*, \beta^*) = \operatorname{argmax}_{\alpha, \beta} \mathcal{L}(a, b; \alpha, \beta)$, with

 $\mathcal{L}(a,b;\alpha,\beta) = \alpha^{\top} a + \beta^{\top} b - \frac{1}{\lambda} \sum_{i=1}^{n,m} \mathbf{e}^{-\lambda(M_{ij}-\alpha_i-\beta_j)}.$

By Sinkhorn's scaling theorem, $T^{\lambda} = \text{diag}(e^{\lambda \alpha^{\star}})e^{-\lambda M}\text{diag}(e^{\lambda \beta^{\star}}) \rightarrow T^{\lambda}$ is smooth if $(\alpha^{\star}, \beta^{\star})$ is smooth as a function of (a, b).

Step 3: The smoothness of $(\alpha^{\star}, \beta^{\star})$ is proved using the Implicit Function theorem and follows from the smoothness and strong convexity in α, β of the function \mathcal{L} .

The Implicit Function Theorem also provides a formula for the gradient of S_{λ} :

Input: $a \in \Delta_n, b \in \Delta_m$, cost matrix $M \in \mathbb{R}^{n,m}_+$, $\lambda > 0$. $T = \text{SINKHORN}(a, b, M, \lambda), \qquad T = T_{1:n,1:(m-1)}$ $L = T \odot M$, $L = L_{1:n,1:(m-1)}$ $D_1 = \text{diag}(T1_m), \quad D_2 = \text{diag}(\bar{T}^{\top}1_n)^{-1}$ $H = D_1 - TD_2T^{\top}$, $f = -L1_m + \bar{T}D_2\bar{L}^{\top}1_n$, $g = H^{-1}$ **Return:** $g - 1_n(g^{\top}1_n)$ **Algorithm 1:** Gradient of S_{λ}

Synthetic experiment. Find the barycenter of nested ellipses.

Figure: (Left) Sample input data. (Middle) Barycenter with \tilde{S}_{λ} . (Right) Barycenter with S_{λ} . While solutions of optimization with \tilde{S}_{λ} are often 'blurry', S_{λ} preserves the sharpness of the data.

LEARNING WITH SINKHORN LOSS: SETTING

Goal: approximate a minimizer of the *expected risk*

given a training set $(x_i, y_i)_{i=1}^\ell$ independently sampled from ρ . The loss function $\mathcal{S} : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ in our setting is either S_{λ} or S_{λ} .

 $\hat{f}(x) = \operatorname*{argmin}_{u \in \mathcal{V}} \sum_{i=1}^{c} \alpha_i(x) \mathcal{S}(y, y_i), \quad \text{for any } x \in \mathcal{X}.$ (1)

STATISTICAL ANALYSIS

Theorem (Universal Consistency) Let $\mathcal{Y} = \Delta_n^{\epsilon}$, $\lambda > 0$ and \mathcal{S} be either \tilde{S}_{λ} or S_{λ} . Let k be a bounded continuous universal kernel on \mathcal{X} . For any $\ell \in \mathbb{N}$ and any distribution ho on $\mathcal{X} imes \mathcal{Y}$ let $f_\ell : \mathcal{X} o \mathcal{Y}$ be the estimator in (1) trained with ℓ points sampled from ρ . Then $\lim_{\ell \to \infty} \mathcal{E}(\widehat{f_{\ell}}) = \min_{f: \mathcal{X} \to \mathcal{V}} \mathcal{E}(f) \quad with \text{ probability } 1.$

holds with high probability with respect to the sampling of training data.

Role of the smoothness : the proof is technical but essentially allows to embed the problem into a Hilbert setting. This is the first universal consistency result for learning with Sinkhorn loss!

EXPERIMENTS

Image Reconstruction

Goal: given the upper half of Google QuickDraw images, predict their bottom half. ruction Error (%) KEC KDE Hell 8.0 ± 2.4 12.0 ± 4.1 0.9Ø $\pm 1.1 \quad 29.2 \pm 0.8 \quad 40.8 \pm 4.2$ $\pm 2.5 \quad 48.3 \pm 2.4 \quad 64.9 \pm 1.4$

	Reconstr	
# Cls.	$S_{\boldsymbol{\lambda}}$	$\tilde{S}_{\boldsymbol{\lambda}}$
2	3.7 ± 0.6	$4.9 \pm$
4	22.2 ± 0.9	$31.8 \pm$
10	38.9 ± 0.9	$44.9 \pm$

Figure: (Left) Reconstruction error of Sinkhorn, Hellinger and KDE. Misclassification rate of the base SVM classifier: 0.02, 0.07, 0.17. (Right) Examples of training and reconstructed data.

REFERENCES

Problem Setting: \mathcal{X} input space, $\mathcal{Y} = \Delta_n$ a set of normalized histograms (output space).

$$\mathcal{E}(f) = \int_{\mathcal{X} \times \mathcal{Y}} \mathcal{S}(f(x), y) \, d\rho(x, y)$$

Structured Prediction Estimator. Given a training set $(x_i, y_i)_{i=1}^\ell$, we consider $\widehat{f}: \mathcal{X} \to \mathcal{Y}$ the structured prediction estimator proposed in [2], defined as

The weights $\alpha_i(x) \rightarrow$ Are scores measuring similarity of test point and training points \rightarrow Are obtained via Kernel Ridge Regression

We use the smoothness of S_{λ} to prove consistency and learning rates of the estimator

Theorem (Learning Rates -informal) Let $\mathcal{Y} = \Delta_n^{\epsilon}$, $\lambda > 0$ and \mathcal{S} and \hat{f}_{ℓ} as above. Then, $\mathcal{E}(\widehat{f}_{\ell}) - \min_{f \colon \mathcal{X} \to \mathcal{Y}} \mathcal{E}(f) = O(\ell^{-1/4})$