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Goal: In a supervised learning setting, learn functions f : X → Y
where the output space Y is a set of discrete probability distributions.

Tool: Optimal Transport
Approach: Use Sinkhorn approximations as loss functions

Contributions:
• Characterise the differential properties of Sinkhorn approximations.
• Provide learning bounds for learning with Sinkhorn loss(es), adopting
a structured prediction perspective.

CONTRIBUTIONS IN A NUTSHELL

Optimal transport theory compares probability measures over a metric space.
Wasserstein distance (discrete setting):

Wp
p(µ, ν) = min

T∈Π(a,b)
〈T,M〉

where M ∈ Rn×m is the cost matrix with entries Mij = d(xi, yj)p and Π(a, b)
denotes the transportation polytope

Π(a, b) = {T ∈ Rn×m
+

∣∣∣∣∣∣ T1m = a, T>1n = b
.

Regularization of Wasserstein distance
Definition Given µ and ν as above, entropic regularizations of the Wasserstein
distance, referred to as Sinkhorn distances [1] are defined as

S̃λ(a, b) = 〈Tλ,M〉 −
1
λ
h(Tλ) and Sλ(a, b) = 〈Tλ,M〉 ,

where

h(T ) := −
n,m∑
i,j=1

Tij(log Tij − 1) and Tλ = argmin
T∈Π(a,b)

〈T,M〉 − 1
λ
h(T ).

Proposition Let λ > 0. For any pair of discrete measures µ, ν ∈ P(X) with
respective weights a ∈ ∆n and b ∈ ∆m, we have∣∣∣∣ Sλ(µ, ν)−W(µ, ν)

∣∣∣∣ ≤ c1 e−λ
∣∣∣∣ S̃λ(µ, ν)−W(µ, ν)

∣∣∣∣ ≤ c2/lambda,

with c1, c2 constants independent of λ, depending on the support of µ and ν.

Question: Is Sλ a more natural approximation of the Wasserstein distance W?
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Figure: Comparison of the sharp (Blue) and regularized (Orange) barycenters
of two Dirac’s deltas (Black) centered in 0 and 20 for different values of λ.

BACKGROUND

We characterise regularity properties of Sinkhorn maps.

Theorem For any λ > 0, Sinkhorn maps S̃λ and Sλ : ∆n×∆n→ R are C∞ in the interior
of their domain.

Proof (sketch). The proof is organized in the following steps:
Step 1: Sλ and S̃λ are smooth as functions of T λ → sufficient to show that T λ is smooth in a, b.
Step 2: Set (α?, β?) = argmaxα,β L(a, b;α, β), with

L(a, b;α, β) = α> a + β> b− 1
λ

n,m∑
i,j=1

e−λ(Mij−αi−βj).

By Sinkhorn’s scaling theorem, T λ = diag(eλα?)e−λMdiag(eλβ?) → T λ is smooth if (α?, β?) is smooth
as a function of (a, b).
Step 3: The smoothness of (α?, β?) is proved using the Implicit Function theorem and follows from
the smoothness and strong convexity in α, β of the function L.

The Implicit Function Theorem also provides a formula for the gradient of Sλ:

Input: a ∈ ∆n, b ∈ ∆m, cost matrix M ∈ Rn,m
+ , λ > 0.

T = Sinkhorn(a, b,M, λ), T̄ = T1:n,1:(m−1)
L = T �M , L̄ = L1:n,1:(m−1)
D1 = diag(T1m), D2 = diag(T̄>1n)−1

H = D1− T̄D2T̄
>, f = − L1m + T̄D2L̄

>1n,
g = H−1 f
Return: g− 1n( g>1n)

Algorithm 1: Gradient of Sλ

Synthetic experiment. Find the barycenter of nested ellipses.

Figure: (Left) Sample input data. (Middle) Barycenter with S̃λ. (Right) Barycenter with Sλ. While
solutions of optimization with S̃λ are often ‘blurry’, Sλ preserves the sharpness of the data.

Figure: Ratio of time(autodiff) / time(Alg.1) for 10, 50, and 100 iterations of Sinkhorn algorithm

DIFFERENTIAL PROPERTIES

Problem Setting: X input space, Y = ∆n a set of normalized histograms (output space).
Goal: approximate a minimizer of the expected risk

E(f ) =
∫
X×Y S(f (x), y) dρ(x, y)

given a training set (xi, yi)`i=1 independently sampled from ρ. The loss function S : Y × Y → R
in our setting is either Sλ or S̃λ.

Structured Prediction Estimator. Given a training set (xi, yi)`i=1, we consider f̂ : X → Y the
structured prediction estimator proposed in [2], defined as

f̂ (x) = argmin
y∈Y

∑̀
i=1
αi(x) S(y, yi), for any x ∈ X . (1)

The weights αi(x) → Are scores measuring similarity of test point and training points
→ Are obtained via Kernel Ridge Regression

LEARNING WITH SINKHORN LOSS: SETTING

We use the smoothness of Sλ to prove consistency and learning rates of the estimator

Theorem (Universal Consistency) Let Y = ∆ε
n, λ > 0 and S be either S̃λ or Sλ. Let k be a bounded

continuous universal kernel on X . For any ` ∈ N and any distribution ρ on X × Y let f̂` : X → Y
be the estimator in (1) trained with ` points sampled from ρ. Then

lim
`→∞
E(f̂`) = min

f :X→Y
E(f ) with probability 1.

Theorem (Learning Rates -informal) Let Y = ∆ε
n, λ > 0 and S and f̂` as above. Then,

E(f̂`)− min
f :X→Y

E(f ) = O(`−1/4)

holds with high probability with respect to the sampling of training data.
Role of the smoothness : the proof is technical but essentially allows to embed the problem into
a Hilbert setting. This is the first universal consistency result for learning with Sinkhorn loss!

STATISTICAL ANALYSIS

Image Reconstruction

Goal: given the upper half of Google QuickDraw images, predict their bottom half.

Reconstruction Error (%)
# Cls. Sλ S̃λ Hell KDE

2 3.7± 0.6 4.9± 0.9 8.0± 2.4 12.0± 4.1
4 22.2± 0.9 31.8± 1.1 29.2± 0.8 40.8± 4.2

10 38.9± 0.9 44.9± 2.5 48.3± 2.4 64.9± 1.4
Figure: (Left) Reconstruction error of Sinkhorn, Hellinger and KDE. Misclassification rate of the
base SVM classifier: 0.02, 0.07, 0.17. (Right) Examples of training and reconstructed data.
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