
Regularity properties of Entropic Optimal
Transport in applications to machine learning

Giulia Luise

University College London

MAGA Days, 20/11/2019



Table of contents 2

1. Introduction

2. Advantage of Entropic regularization in terms of regularity

3. ‘Applications’ of this regularity



Notation 3

X ⊂ Rd compact

M(X ) space of finite measures over X

P(X ) probability measures over X

c : X × X → [0,+∞) continuous, symmetric cost function
(c(·, ·) = ‖· − ·‖p, p ∈ [1,∞)).



Optimal Transport Problem 4

Given α, β ∈ P(X ), the Optimal Transport (OT) problem is

Optimal Transport Problem

W (α, β) := inf
π∈Π(α,β)

∫
X×X

c(x, y) dπ(x, y) (1)

where Π(α, β) = {π ∈ P(X×X ) s.t. Proj1#π = α,Proj2#π = β}.



Optimal Transport Problem - Discrete Setting 5

Given α, β ∈ P(X ) finite discrete probability measures

α =

n∑
i=1

aiδxi , β =

m∑
j=1

bjδyj ,

with x1, . . . , xn ∈ X and y1, . . . ym ∈ X and
a := (a1, . . . , an) ∈ ∆n, b := (b1, . . . , bn) ∈ ∆n (∆n is the
simplex).



Discrete Setting 6

Optimal Transport Problem: Set C ∈ Rn×m with
Cij = c(xi, yj),

W (α, β) = min
T∈Π(a,b)

〈T,C〉 (2)

where Π(a, b) = {T ∈ Rn×m+ s.t. T1 = a, T>1 = b} is the
transport polytope.



Entropic Regularized Optimal Transport Problem 7

Given α, β ∈ P(X ), the Entropic Optimal Transport (OT)
problem is

OTε(α, β) := min
π∈Π(α,β)

∫
X×X

c(x, y) dπ(x, y) + εKL(α⊗ β, π)

Discrete setting:

OTε(α, β) = min
T∈Π(a,b)

〈T,C〉+ ε
∑
i,j

Tij(log
( Tij
aibj

)
− 1).



Sinkhorn divergence 8

To remove the bias (OTε(α, α) 6= 0) introduced by the KL, one
could consider the unbiased Sinkhon divergence [Feydy et al., 2019]:

Sε(α, β) = OTε(α, β)− 1

2
OTε(α, α)− 1

2
OTε(β, β).

Figure: Sε



Computational Advantage of Entropic Regularization 9

Computational cost

Optimal transport:

Hungarian algorithm / others

Õ(n3) [Pele, et al., 2009]

Entropic OT:

Sinkhorn algorithm/ variants

Õ(n2/ε2) [Cuturi, 2013, Altschuler et al.,

2018]



Statistical Advantage of Entropic Regularization 10

Sample complexity

Optimal Transport

EW (α, α̂n)) � n−
1
d (on Rd)

curse of dimensionality
[Dudley, 1969]

Entropic OT

E|OTε(α, α̂n)| ≤ C(ε)n−
1
2

no curse!
[Genevay et al., 2019]



Part II: Advantages of Entropic OT in terms of
regularity



Regularity properties 12

Entropic regularization provides advantages in terms of
regularity itself.

Regularity in which sense?

This regularity enables to show theoretical guarantees of
different nature, namely from statistical and optimization point
of view.



Advantages in terms of smoothness 13

Entropic regularization
[L. et al., 2019]−−−−−−−−→ Lipschitzness of the

gradient of Sinkhorn divergence

Entropic regularization
[Genevay. et al., 2019]−−−−−−−−−−−−→ High order

regularity of Sinkhorn potentials
[L. et al., 2019]−−−−−−−−→ sample

complexity of Sinkhorn gradients

Entropic regularization
[L. et al., 2018]−−−−−−−−→ high order

differentiability of Sinkhorn divergence (in a restricted
setting, simplex)



Dual formulation of entropic OT 14

OTε(α, β) = max
u,v∈C(X )

∫
X
u dα+

∫
X
v dβ − ε

∫
X×X

e
u⊕v−c
ε dα dβ,

(3)

First order optimality conditions read as

e−
u(x)
ε =

∫
X
e
v(y)−c(x,y)

ε dβ(y) for x ∈ supp(α),

e
−v(y)
ε =

∫
X
e
u(x)−c(x,y)

ε dα(x) for y ∈ supp(β).

Formulas above provide a canonical extension of u, v on the
whole domain X .



Result on Lipschitzness 15

Gradient of Entropic OT is given by the optimal potentials
extended on the whole domain X . We write

∇OTε(α, β) = (u, v).

Theorem. The gradient ∇OTε is Lipschitz continuous:

for every α, α′, β, β′ ∈ P(X ), let (u, v) = ∇OTε(α, β) and

(u′, v′) = ∇OTε(α
′, β′). Then,

∥∥u− u′∥∥∞ +
∥∥v − v′∥∥∞ ≤ Cε(

∥∥α− α′∥∥
TV

+
∥∥β − β′∥∥

TV
),

Moreover, ∇Sε is Lipschitz continuous.
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Ingredients of the proof 16

The proof relies on:

• Hilbert metric and its relation with ‖·‖∞

• Contraction properties under Hilbert metric

• Estimates of

C(X )〈e
−c(x,·)

ε e
v(·)
ε , β − β′〉M(X ), C(X )〈e

−c(x,·)
ε e

u(·)
ε , α− α′〉M(X ).



Smoothness properties 17

Entropic reg
[L. et al., 2019]−−−−−−−−→ Lipschitzness of the gradient of

Sinkhorn divergence X

Entropic reg
[Genevay. et al., 2019]−−−−−−−−−−−−→ High order regularity of

Sinkhorn potentials
[L. et al., 2019]−−−−−−−−→ Sample complexity of

Sinkhorn gradients

Entropic reg
[L. et al., 2018]−−−−−−−−→ high order differentiability of

Sinkhorn divergence (in a restricted setting, simplex)



Sample complexity of Sinkhorn potential 18

(α, β)
gradient−−−−−→ (u, v)

(α̂n, β̂n)
gradient−−−−−→ (un, vn)

We know that |OTε(α, β)−OTε(α̂n, β̂n)| ≤ Cεn−
1
2 with high

probability.

What can we say on ‖u− un‖∞?



Sample complexity of Sinkhorn potentials 19

We have

‖u− un‖∞ . ‖α− α̂n‖TV + ‖β − β̂n‖TV .

If α̂n and β̂n converged to α, β in TV norm with some given
rate, we could deduce a sample complexity result.

But it is not the case. . .

Exploiting the fact that the potentials belong not only to C(X )
but also to W s,2(X ) for s big enough [Genevay et al., 2019], we can get
a similar bound with a weaker norm (MMD) on the r.h.s.
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Sample complexity of Sinkhorn potentials 20



Sample complexity of Sinkhorn potentials 21

β ∈ P(X ) can be represented as an element µβ (mean
embedding) in a suitable Hilbert space H (with H ⊂ C(X ))
[Gretton et al., 2013].

If f ∈ H, it holds that

〉C(X )〈f, β〉M(X ) =〉H〈f, µβ〉H.



Sample complexity of Sinkhorn gradient 22

β ∈ P(X ) can be represented as an element µβ ∈ H (mean
embedding).

If f ∈ H −→ 〉C(X )〈f, β〉M(X ) =〉H〈f, µβ〉H.

Now, e
−c(x,·)
ε e

v(·)
ε belongs to a ball with some fixed radius in

H = W s,2(X )[Genevay et al, 2019]. Hence,

〉C(X )〈e
−c(x,·)
ε e

v(·)
ε , β − β′〉M(X ) = 〉H〈e

−c(x,·)
ε e

v(·)
ε , µβ − µ′β〉H

≤ C‖µβ − µβ′‖H =: MMD(β′, β).
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Sample complexity of Sinkhorn gradient 23

β ∈ P(X ) can be represented as an element µβ ∈ H (mean
embedding).

If f ∈ H −→ C(X )〈f, β〉M(X )
= H〈f, µβ〉H .

Now, e
−c(x,·)
ε e
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Note: MMD(β, β̂n) ≤ Cn−
1
2 in high probability.
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Sample complexity of Sinkhorn potentials 24

Theorem (Sample Complexity of Sinkhorn Potentials)

Suppose that c ∈ Cs+1(X × X ) with s > d/2. Then, there exists
a constant r = r(X , c, d) such that for any α, β ∈ P(X ) and any
empirical measure β̂ of a set of n points independently sampled
from β, we have, for every τ ∈ (0, 1]

‖u− un‖∞ = ‖∇1OTε(α, β)−∇1OTε(α, β̂)‖∞ ≤
Cε log 3

τ√
n

(4)

with probability at least 1− τ .



Smoothness properties 25

Entropic reg
[L. et al., 2019]−−−−−−−−→ Lipschitzness of the gradient of

Sinkhorn divergence X

Entropic reg
[Genevay. et al., 2019]−−−−−−−−−−−−→ High order regularity of

Sinkhorn potentials
[L. et al., 2019]−−−−−−−−→ Sample complexity of

Sinkhorn gradients X

Entropic reg
[L. et al., 2018]−−−−−−−−→ High order differentiability of

Sinkhorn divergence (in a restricted setting, simplex)



High order differentiability on the simplex 26

Let’s consider the setting: a, b ∈ ∆n, ∆n is the simplex.

Theorem
OTε : ∆n ×∆n → R is C∞ differentiable in the interior of the
domain.

The proof is an application of the implicit function theorem.



Regularity properties 27

Entropic regularization provides advantages in terms of
regularity itself.

Regularity in which sense? X

This regularity enables to show theoretical guarantees of
different nature, namely from statistical and optimization point
of view.



Part III, Applications:

1. Theoretical guarantees for Sinkhorn barycenters

2. Statistical guarantees for supervised learning with
Sinkhorn loss



Barycenter problem 29

Figure: 2D-Sinkhorn barycenters, taken from [Cuturi and Peyré, Computational OT]

Given β1, . . . , βm ∈ P(X ), the barycenter with respect to
Sinkhron divergence is

α∗ = argmin
α∈P(X )

Bε(α), Bε(α) =

m∑
j=1

wjSε(α, βj)

with wj ≥ 0,
∑

j wj = 1.



Fixed support and free support 30

Fixed support methods: fix {xi}Ni=1 and set α∗ =
∑N

i=1 aiδxi .
Optimize Bε on a = (a1, . . . , aN ). E.g. Iterative Bregman
projections. Well understood theoretical guarantees.
[Benamou et al., 2015, Dvurechensky et al., 2018]

Free support methods: usually alternate minimization to
optimize weights a and support points locations xi, i = 1, . . . , N
[Cuturi et al., 2014]. Other approaches? Theoretical guarantees of
convergence?



FW approach 31

We propose an approach based on Frank-Wolfe algorithm. The
features of this method are the following:

• There is no alternation in optimizing w.r.t points and w.r.t
weights

• The barycenter is populated via an iterative procedure

• There is no parameter tuning



Frank-Wolfe algorithm 32

W is a real Banach space,
with W∗ topological dual

D ⊂ W∗ nonempty,
convex, closed, bounded
set

G : D → R convex function
with ∇G : D →W
Lipschitz

Algorithm 1 Frank-Wolfe
input: initial w0 ∈ D, threshold ∆k s.t.

∆k(k + 2) is nondecreasing

For k = 1, 2, . . .

take zk+1 s.t.
〈
∇G(wk), zk+1 − wk

〉
≤

minz∈D 〈∇G(wk), z − wk〉 +
∆k
2

wk+1 = wk + 2
k+2

(zk+1 − wk)

Convergence rate O(1/k)
[Jaggi, 2013]



Our setting 33

Recall: Bε(α) =
∑m

j=1wjSε(α, βj).

W∗

D ⊂ W∗

W
G : D −→ R

)

)

)

)

M(X )

P(X ) ⊂M(X )

C(X )

Bε : P(X ) −→ R

Note that since ∇Sε is Lipschitz, ∇Bε is Lipschitz.



Convergence guarantees for finite input measures 34

Theorem
Suppose that β1, . . . βm ∈ P(X ) have finite support and let αk be
the k-th iterate of Alg1 applied to Bε. Then,

Bε(αk)− min
α∈P(X )

Bε(α) ≤ Cε
k + 2

. (5)

Convergence guarantees for this free support method.



What if βj are not finite and we only have access to
samples?

Frank-Wolfe algorithm allows to use approximations of the
gradient rather than the real gradient.



What if βj are not finite and we only have access to
samples?

Frank-Wolfe algorithm allows to use approximations of the
gradient rather than the real gradient.

We need to control the
approximation ∇Bε(·, β̂) of
∇Bε(·, β) −→ this is doable
because we have a result on
the sample complexity.



Convergence guarantees in general setting 37

Setting:

• c ∈ Cs+1(X × X ) with s > d/2

• β̂1, . . . , β̂m be empirical distributions with n ∈ N support
points, each independently sampled from β1, . . . , βm.

Let αk be the k-th iterate of FW applied to β̂1, . . . , β̂m. Then
for any τ ∈ (0, 1],

Bε(αk)− min
α∈P(X )

Bε(α) ≤
Cε log 3m

τ

min(k,
√
n)
.

with probability larger than 1− τ .



Convergence rate in general setting 38

Bε(αk)− min
α∈P(X )

Bε(α) ≤
Cε log 3m

τ

min(k,
√
n)

w.h.p.

If β̂j , j = 1, . . .m, are sampled with n = k2 points at iteration k:
−→ rate of convergence: O( 1

k )

If β̂j , j = 1, . . .m, are sampled with n = k points at iteration k:
−→ rate of convergence: O( 1√

k
).



Experiment 39

Barycenter of 30 randomly generated nested ellipses on a
50× 50 grid [Cuturi et al., 2014]. Each image is interpreted as a
probability distribution in 2D.



Learning with Sinkhorn divergence as loss function 40

Learning problem:

• input space X
• output space Y
• unknown probability measure ρ on X × Y, accessed

through {(xi, yi)}Ni=1 sampled iid from ρ

• loss function ` : Y × Y → R
• expected risk of a function f : X → Y

E(f) =

∫
X×Y

`(f(x), y)dρ

Goal: find a good approximation f̂N of the minimizer f∗ of E
using {(xi, yi)}Ni=1.



Consistent estimator 41

Desirable property: Intuitively we would want that as the
number of points increases, so “we get to know ρ better”, then
the error that we expect to make using f̂N rather than f∗

should get smaller

E(f̂N )
N→+∞−−−−−→ E(f∗) with high probability

The property above is called consistency.



Learning with Sinkhorn divergence as loss function 42

X
Y
unknown ρ

`

)

)

)

)

X
P({1, 2, . . . , k}) = ∆k

unknwon ρ

Sinkhorn divergence Sε



Learning with Wasserstein loss 43

C. Frogner et al. 2015: ‘Learning with Wasserstein loss’:

Application: tag prediction, i.e. predicting probability over tags
of an image.

The estimator that they proposed was not shown to be
consistent and this is what motivated our work [L., et al, 2018].



Learning with Sinkhorn divergence 44

We interpret the problem of learning with Sinkhorn loss with
simplex ∆k as output space as a structured prediction problem
which is to be solved using a surrogate framework.

Intuition behind surrogate framework :



Learning with Sinkhorn divergence 45

Where do the regularity properties of Entropic OT come to
play?

High order smoothness of Sε in the interior of ∆k

↓

encoding+surrogate+decoding is a valid procedure

↓

consistent estimator for learning with Sinkhorn loss.



Conclusion 46

We showed that entropic regularization leads to a range of
smoothness properties

• lipschitzness of the gradient
• sample complexity of the potentials
• high order differentiability on the simplex

We used the smoothness properties to show theoretical
guarantees in:

• Sinkhorn barycenter problem with free support
• supervised learning with Sinkhorn loss function



Conclusion 47

Thank you for the attention!
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Proof Lipschitzness 49

Set D := supy,y∈X c(x, y), the diameter of X

Denote by L the operator Lα : C(X )→ C(X ) is defined as

(∀f ∈ C(X )) Lαf : x 7→
∫
e
−c(x,z)

ε f(z) dα(z); (6)

Theorem (Birkhoff-Hopf Theorem)

Let λ = eD/ε−1
eD/ε+1

and α ∈ P(X ). Then, for every f, f ′ ∈ C+(X )

such that f ∼ f ′, we have

dH(Lαf, Lαf
′) ≤ λ dH(f, f ′). (7)
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Proof Lipschitzness II 50

Let α ∈ P(X ). We define the map Aα : C++(X )→ C++(X ), such that

(∀ f ∈ C++(X )) Aα(f) = 1/(Lαf), (8)

Set f := e
u
ε , g := e

v
ε . Recall that

e−
u(x)

ε =

∫
X
e

v(y)−c(x,y)
ε dβ(y) (∀x ∈ supp(α))

e−
v(y)
ε =

∫
X
e

u(x)−c(x,y)
ε dα(x) (∀ y ∈ supp(β)),

Then it holds
f = Aβ(g) and g = Aα(f), (9)

or equivalently, by setting Aβα = Aβ ◦ Aα and Aαβ = Aα ◦ Aβ ,

f = Aβα(f) and g = Aαβ(g). (10)



Proof Lipschitzness III 51

Theorem (Hilbert’s metric contraction for Aβα)

The map Aβα : C++(X )→ C++(X ) has a unique fixed point up

to positive scalar multiples. Moreover, let λ = eD/ε−1
eD/ε+1

. Then, for

every f, f ′ ∈ C++(X ),

dH(Aβα(f),Aβα(f ′)) ≤ λ2 dH(f, f ′). (11)



Proof Lipschitzness IV 52

Relation between Hilbert distance and infinity norm:

ε

2
dH(eu/ε, eu

′/ε) ≤
∥∥u− u′∥∥∞ ≤ ε dH(eu/ε, eu

′/ε)



Proof Lipschitzness V 53

Putting everything together:

dH(f, f ′) ≤ 1

1− λ2
dH(Aβα(f),Aβ′α′(f)).

Using triangle inequality and some computations on
dH(Aβα(f),Aβ′α′(f)), we arrive at a point where we only need
to estimate:

[(Lβ′ − Lβ)g](x) =

∫
e
−c(x,z)

ε g(z) d(β − β′)(z)

=
〈
e
−c(x,·)
ε g, β − β′

〉
≤ ‖g‖∞

∥∥β − β′∥∥
TV

.



Lipschitz constant 54
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