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Goal and contributions of the paper



Goal

We propose a novel method to compute the barycenter of a set of

probability distributions with respect to the Sinkhorn divergence

that:

• does not fix the support beforehand

• handles both discrete and continuous measures

• admits convergence analysis.
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Goal and contributions

Our analysis hinges on the following contributions:

• We show that the gradient of the Sinkhorn divergence is

Lipschitz continuous

• We characterize the sample complexity of an emprical

estimator approximating the Sinkhorn gradients.

• A byproduct of our analysis is the generalization of the

Frank-Wolfe algorithm to settings where the objective

functional is defined only on a set with empty interior, which

is the case for Sinkhorn divergence barycenter problem.
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Setting and problem statement



Setting and Notation

• X ⊂ Rd is a compact set

• c : X × X → R is a symmetric cost function, e.g.

c(·, ·) = ‖· − ·‖22

• P(X ) is the space of probability measures on X .

• M(X ) is the Banach space of finite signed measures on X .
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Entropic Regularized Optimal Transport

For any α, β ∈ P(X ), the Optimal Transport problem with

entropic regularization is defined as follow

OTε(α, β) = min
π∈Π(α,β)

∫
X 2

c(x, y) dπ(x, y)+εKL(π|α⊗β), ε ≥ 0

where Π(α, β) = {π ∈ P(X×X ) s.t. Proj1#π = α,Proj2#π = β}.
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Properties of OTε

OTε is used to compare probability measures:

i) geometric flavour, lifting of the distance on X to P(X )

ii) meaningful for measures with non-overlapping support

Sinkhorn divergence [Genevay et al., 2018] is a small variant of OTε:

Sε(α, β) := OTε(α, β)− 1

2
OTε(α, α)− 1

2
OTε(β, β),

Sε is nonnegative, convex (see [Feydy et al., 2019]).
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Barycenters
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Barycenter Problem

Barycenters of probabilities are useful in a range of applications, as

texture mixing, Bayesian inference, imaging.

The barycenter problem w.r.t. Sinkhorn divergence is

formulated as follows:

given β1, . . . βm ∈ P(X ) input measures, and ω1, . . . , ωm ≥ 0 a set

of weights such that
∑m

j=1 ωj = 1, solve

min
α∈P(X )

Bε(α), with Bε(α) =

m∑
j=1

ωj Sε(α, βj).
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Approach: Frank-Wolfe algorithm

Classic methods to approach barycenter problem:

assume α∗ =
∑N

i=1 aiδxi

1. fixed support methods: the support {xi}Ni=1 is fixed a priori

and the optimization occurs on the weights only. E.g.:

Iterative Bregman projections. Well understood convergence

analysis.

OR

2. free support methods: a standard approach is to use

alternating minimization on on weights and support points

(no convergence guarantees). Different approach? Theoretical

guarantees?
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Our approach

Our approach via Frank-Wolfe:

− There is no alternation in optimizing wrt weights and wrt

support points;

− It iteratively populates the barycenter, adding one point to the

support at each iteration;

− It has no hyperparameter tuning.
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Approach



Frank-Wolfe algorithm

• W is a real Banach

space, with dual W∗

• D ⊂ W∗ nonempty,

convex, closed, bounded

set

• G : D → R convex

function with

∇G : D →W Lipschitz

Algorithm 1 Frank-Wolfe
input: initial w0 ∈ D, threshold ∆k s.t.

∆k(k + 2) is nondecreasing

For k = 1, 2, . . .

take zk+1 s.t. 〈∇G(wk), zk+1 − wk〉 ≤
minz∈D 〈∇G(wk), z − wk〉+ ∆k

2

wk+1 = wk + 2
k+2

(zk+1 − wk)

Convergence rate O(1/k)

[Jaggi, 2013]
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Our setting

Recall: Bε(α) =
∑m

j=1wjSε(α, βj).

W∗

D ⊂ W∗

W
G : D −→ R

)

)

)

)

M(X )

P(X ) ⊂M(X )

C(X )

Bε : P(X ) −→ R

Optimization domain: P(X ) is closed, convex and bounded inM(X )

Objective functional:

convexity

Lipschitzness of the gradient ?
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Lipschitz continuity of Sinkhorn potentials

This is one of the main contributions of the paper.

Theorem

The gradient ∇Sε : P(X )× P(X )→ C(X )× C(X ) is Lipschitz

continuous, i.e. for all α, α′, β, β′ ∈ P(X ),∥∥∇Sε(α, β)−∇Sε(α
′, β′)

∥∥
∞ . (

∥∥α− α′∥∥
TV

+
∥∥β − β′∥∥

TV
).

It follows that ∇Bε is also Lipschitz continuous and hence our

framework is suitable to apply FW algorithm.
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Convergence analysis



Convergence analysis-finite case

Theorem

Suppose that β1, . . . βm ∈ P(X ) have finite support and let αk be

the k-th iterate of our algorithm. Then,

Bε(αk)− min
α∈P(X )

Bε(α) ≤ Cε
k + 2

,

where Cε is a constant depending on ε and on the domain X .

Convergence analysis for a free-support method.
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What if βj are not finite and we only have access to

samples?

Frank-Wolfe algorithm allows to use approximations of the

gradient rather than the real gradient.
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What if βj are not finite and we only have access to

samples?

Frank-Wolfe algorithm allows to use approximations of the

gradient rather than the real gradient.

We need to control the

approximation ∇Bε(·, β̂) of

∇Bε(·, β) −→ it is enough to

control the approximation

∇Sε(·, β̂) of ∇Sε(·, β). Can we

do this?
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Sample complexity of Sinkhorn Gradients

Theorem (Sample Complexity of Sinkhorn Potentials)

Suppose that c is smooth. Then, for any α, β ∈ P(X ) and any

empirical measure β̂ of a set of n points independently sampled

from β, we have, for every τ ∈ (0, 1]

‖∇1Sε(α, β)−∇1Sε(α, β̂)‖∞ ≤
Cε log 3

τ√
n

with probability at least 1− τ .
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Convergence guarantees in general setting

Setting:

• cost function c smooth

• β̂1, . . . , β̂m be empirical distributions with n ∈ N support

points, each independently sampled from β1, . . . , βm.

Let αk be the k-th iterate of FW applied to β̂1, . . . , β̂m. Then for

any τ ∈ (0, 1],

Bε(αk)− min
α∈P(X )

Bε(α) ≤
Cε log 3m

τ

min(k,
√
n)
.

with probability larger than 1− τ .
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Convergence analysis in general setting

Bε(αk)− min
α∈P(X )

Bε(α) ≤
Cε log 3m

τ

min(k,
√
n)

w.h.p.

If β̂j , j = 1, . . .m, are sampled with n = k2 points at iteration k:

−→ rate of convergence: O( 1
k )

If β̂j , j = 1, . . .m, are sampled with n = k points at iteration k:

−→ rate of convergence: O( 1√
k
).
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Experiments



Barycenter of nested ellipses

Barycenter of 30 randomly generated nested ellipses on a 50× 50 grid

similarly to [Cuturi and Doucet, 2014]. Each image is interpreted as a

probability distribution in 2D.
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Barycenters of continuous measures

Barycenter of 5 Gaussian distributions with mean and covariance

randomly generated.

scatter plot: output of our method

level sets of its density: true Wasserstein barycenter

FW recovers both the mean and covariance of the target

barycenter.
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Matching of a distribution

“Barycenter” of a single measure β ∈ P(X ).

Solution of this problem is β itself → we can interpret the

intermediate iterates as compressed version of the original measure.

FW prioritizes the support points with higher weight.
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Summary

• We proposed a novel method to compute Sinkhorn barycenter

with free supports via Frank-Wolfe algorithm.

• We proved convergence rate both in case of finite and

continuous measures.

• We proved two new results on Sinkhorn divergences- Lipschitz

continuity and sample complexity of the gradient-

instrumental for the convergence analysis of the method.
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Thank you for your attention!
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